Лабораторная работа №4

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Обозначим через R класс интегрируемых на отрезке [a,b] функций f(x). Задача численного интегрирования заключается в замене вычисления интеграла вычислением квадратурной суммы вида:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i} f(x_{i}) + R_{n}(f), \qquad (1)$$

где A_i - квадратурные коэффициенты, x_i - узлы квадратурного правила, а $R_n(f)$ - остаток или погрешность квадратурной формулы. Простейшим примером формулы (1) является формула средних прямоугольников. Пусть $c=\frac{a+b}{2}$. Тогда

$$f(x) = f(c) + f'(c)(x - c) + \frac{(x - c)^2}{2!} f^{(2)}(\eta), \qquad (2)$$

где $\eta \in [a,b]$. После интегрирования (2) получим:

$$\int_{a}^{b} f(x)dx = (b-a) f(c) + \int_{a}^{b} \frac{(x-c)^{2}}{2!} f^{(2)}(\eta) dx.$$
 (3)

Считая, что $f^{(2)}(x)$ не меняет знак на отрезке [a,b], на основании второй теоремы о среднем получим:

$$R(f(x)) = \int_{a}^{b} \frac{(x-c)^2}{2!} f^{(2)}(\eta(x)) dx = \frac{(b-a)^3}{24} f^{(2)}(\xi).$$
 (4)

Пусть в (1) все узлы равноотстоящие. Тогда, заменяя f(x) интерполяционным многочленом Лагранжа, получим:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{n}(x)dx + \int_{a}^{b} r(x)dx.$$
 (5)

Откуда следует

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{n}(x)dx + \int_{a}^{b} \frac{\omega(x) f^{(n+1)}(\eta)}{(n+1)!} dx = \sum_{i=0}^{n} A_{i} f(x_{i}) + \int_{a}^{b} r(x) dx,$$

где

$$A_{i} = \int_{a}^{b} \frac{\omega(x)}{(x - X_{i})\omega'(X_{i})} dx, \quad i = \overline{1, n}.$$
 (6)

Правила, коэффициенты которых вычисляются по формуле (6), называются правилами интерполяционного типа.

Формулы Ньютона-Котеса

Пусть на [a,b] задано n+1 равноотстоящих узлов $x_0,...,x_n$, $h=\frac{b-a}{n}$,

 $q = \frac{X - X_0}{h}$. Тогда из (5) получим квадратурную формулу вида

$$\int_{a}^{b} f(x)dx = (b-a)\sum_{i=0}^{n} B_{i}^{n} f(x_{i}) + R_{n}(f),$$
 (7)

где
$$B_i^n = \frac{(-1)^{n-i}}{i!(n-i)!n} \int_0^n \frac{q(q-1)...(q-n)}{q-i} dq$$

Правила вида (7) называются формулами Ньютона-Котеса.

При n = 1 получим формулу трапеций:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] + R_{1}(f),$$

при n = 2 - формулу Симпсона:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \left[f(a) + 4 f(\frac{a+b}{2}) + f(b) \right] + R_2(f),$$

при n=3 получим формулу Ньютона или правило $\frac{3}{8}$:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{8} \left[f(a) + 3 f(a + \frac{b-a}{3}) + 3 f(a + 2\frac{b-a}{3}) + f(b) \right] + R_3(f).$$

<u>Замечание 1</u>: Формулы Ньютона-Котеса при больших n не применяются, так как они становятся вычислительно неустойчивыми.

Оценка погрешности квадратурных правил имеет вид: при n=1

$$R_{\rm l}(f) = \int_{a}^{b} \frac{(x-a)(x-b)}{2!} f^{(2)}(\eta) dx = -\frac{(b-a)^3}{12} f^{(2)}(\xi), \qquad (8)$$

при n=2

$$R_2(f) = \int_a^b \frac{(x-a)(x-c)(x-b)}{3!} f^{(3)}(\eta) dx = -\frac{(b-a)^5}{32} \frac{f^{(4)}(\xi)}{90}.$$
 (9)

Обобщенные формулы численного интегрирования

Из оценок (8) и (9) видно, что погрешность интегрирования возрастает с увеличением длины отрезка интегрирования [a,b]. Для повышения точности исходный отрезок [a, b] разбивают на промежутки частичные [a+ih, a+(i+1)h]. На каждом промежутке вычисления производят по той или иной квадратурной формуле. После суммирования всех выражений получим квадратурную формулу составного или объединенного типа.

Обобщенная формула прямоугольников

 $\int f(x)dx = hf(a + (i+0.5)h), \text{ после суммирования по всем}$

промежуткам имеем:

$$\int_{a}^{b} f(x)dx = h[f(a + \frac{h}{2}) + f(a + \frac{3}{2}h) + \dots + f(a + (i + 0.5)h) + \dots + f(a + (n - 0.5)h)] + R_n(f).$$
(10)

Если
$$f(x) \in C^2_{[a,b]}$$
, то $R_n(f) = \frac{h^2(b-a)}{24} f^{(2)}(\xi)$, где $\xi \in [a,b]$.

 $\frac{\text{Обобщенная формула трапеций}}{\prod \text{Олагая}} \int\limits_{a+(i+1)h}^{a+(i+1)h} f(x) dx = \frac{h}{2} [\ f(a+ih) + \ f(a+(i+1)h)] \ , \ \text{получим составную}$

формулу трапеций:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(a) + 2 f(a+h) + \dots + 2 f(a+(n-1)h) + f(b)] + R_{n}(f).$$
(11)

Если
$$f(x) \in C^2_{[a,b]}$$
, то $R_n(f) = -\frac{h^2(b-a)}{12} f^{(2)}(\xi)$, где $\xi \in [a,b]$.

Таким образом, составные формулы прямоугольников и трапеций имеют второй порядок точности по h. Очевидно, что эти формулы точны для любых многочленов степени не выше $n \le 1$.

Обобщенная формула Симпсона

Пусть
$$n=2m$$
, $h=\frac{b-a}{2m}$. Полагая

$$\int_{a+ih}^{a+(i+2)h} f(x)dx = \frac{h}{3} [f(a+ih) + 4f(a+(i+1)h) + f(a+(i+2)h)],$$

получим составную формулу Симпсона

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \{ f(a) + f(b) + 4[f(a+h) + f(a+3h) + \dots + f(a+(2m-1)h)] + 2[f(a+2h) + f(a+4h) + \dots + f(a+(2m-2)h] \} + R_n(f).$$
(12)

Если
$$f(x) \in C_{[a,b]}^4$$
, то $R_n(f) = -\frac{h^4(b-a)}{180} f^{(4)}(\xi)$, где $\xi \in [a,b]$.

Все правила интерполяционного типа, построенные для n+1 узлов, являются точными для всех многочленов степени не выше n.

Правила наивысшей алгебраической степени точности

На отрезке [a,b] можно выбрать узлы x_i и коэффициенты A_i таким образом, чтобы правило

$$\int_{a}^{b} p(x) f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

$$\tag{13}$$

было точным для всех многочленов степени 2n-1.

<u>Теорема.</u> Для того, чтобы квадратурное правило было точным для любого многочлена степени не выше 2n-1, необходимо и достаточно выполнение условий:

1) правило должно быть интерполяционным, т.е.

$$A_{k} = \int_{a}^{b} p(x) \frac{\omega(x)}{(x - x_{k})\omega'(x_{k})} dx, \qquad (14)$$

2) многочлен $\omega(x) = (x - x_1)(x - x_2)...(x - x_n)$ должен быть ортогонален на [a,b] по весу p(x) ко всякому многочлену $Q_m(x)$ степени меньше n:

$$\int_{a}^{b} p(x)\omega(x)Q_{m}(x)dx = 0.$$
(15)

Многочлен, обладающий свойством (2), существует при любом n, причем все его корни действительны, различны и принадлежат отрезку [a,b].

Если $p(x) \ge 0$, то все коэффициенты $A_k > 0$. Когда $p(x) \equiv 1$, то можно показать, что ортогональный многочлен имеет вид:

$$\omega(x) = \frac{n!}{(2n)!} \frac{d^n}{dx^n} \Big[(x-a)^n (x-b)^n \Big]. \tag{16}$$

Вычисляя корни многочлена (16), построим квадратурную формулу (13), которая называется квадратурной формулой Гаусса. Для погрешности метода Гаусса справедлива формула

$$R_n(f) = \frac{(b-a)^{2n+1} (n!)^4}{[(2n)!]^3 (2n+1)} f^{(2n)}(\xi).$$
 (17)

Коэффициенты A_i при известных значениях узлов x_i можно вычислить по формуле

$$A_{i} = \frac{(n!)^{4} (b-a)^{2n+1}}{[(2n)!]^{2} (x_{i}-a)(b-x_{i})(\omega'(x_{i}))^{2}}.$$
 (18)

Все корни $\omega(x)$ расположены симметрично относительно средней точки отрезка $c=\frac{a+b}{2}$ и, следовательно, $A_i=A_{n-i+1}$. Корни x_i и коэффициенты A_i можно вычислить для фиксированного отрезка [-1,+1]. Путем замены $x=\frac{1}{2}[(b-a)t+b+a]$ произвольный отрезок [a,b] переводится в отрезок [-1,+1]. Запишем правило для отрезка [-1,+1] в виде

$$\int_{1}^{+1} f(t)dt = 2\sum_{i=1}^{n} A_{i} f(t_{i}) + \frac{2^{2n+1}(n!)^{4}}{[(2n)!]^{3}(2n+1)} f^{(2n)}(\xi).$$
 (19)

Тогда для произвольного отрезка получаем

$$\int_{a}^{b} f(x)dx = (b-a)\sum_{i=1}^{n} A_{i} f(\frac{a+b}{2} + \frac{b-a}{2}t_{i}) + \frac{b-a}{2}R_{n}(f). \quad (20)$$

Заметим, что при небольших n узлы и коэффициенты можно получить, исходя из алгебраической степени точности квадратурного правила, т.е. решая систему нелинейных уравнений относительно A_i и x_i :

$$\int_{-1}^{+1} x^i dx = 2 \sum_{k=1}^{n} A_k x_k^i, \quad i = \overline{0, 2n - 1}.$$
 (21)

С целью повышения точности счета можно использовать обобщенные (составные) формулы для небольших значений n. Пусть $h = \frac{b-a}{m}$. Полагая

$$\int_{a+ih}^{a+(i+1)h} f(x)dx = \int_{-1}^{+1} f(a+(i+0.5)h+0.5ht) \frac{h}{2} dt =$$

$$= h \sum_{k=1}^{n} A_k f(a+(i+0.5)h+\frac{h}{2} t_k) + \frac{h^{2n+1} (n!)^4}{[(2n)!]^3 (2n+1)} f^{(2n)}(\xi_k),$$

после суммирования по всем отрезкам получим составную формулу Гаусса:

$$\int_{a}^{b} f(x)dx = h \sum_{k=1}^{n} A_{k} \sum_{i=0}^{m-1} f(a + (i+0.5)h + \frac{h}{2}t_{k}) + \frac{h^{2n}(b-a)(n!)^{4}}{[(2n)!]^{3}(2n+1)} f^{(2n)}(\xi)$$
(22)

Вычисление кратных интегралов

Рассмотрим несколько способов построения формул численного интегрирования вида

$$\int_{G} f(x_1, x_2, ..., x_n) dx_1 ... dx_n = \sum_{i=1}^{n} c_i f(P_i) + R(f),$$
(23)

где G - область n - мерного пространства, P_i - точка G, R(f) - погрешность. Формулы (23) называются кубатурными.

Метод повторного применения квадратурного правила

Будем считать, что область интегрирования прямоугольник $G = \left\{ a \leq x \leq b, c \leq y \leq d \right\}$ и нужно вычислить интеграл $I = \int\limits_{0}^{b} \int\limits_{0}^{d} f(x,y) dx dy$.

Запишем этот интеграл в виде $I = \int_a^b F(x) dx$, где $F(x) = \int_c^d f(x, y) dy$. Для вы-

числения интеграла воспользуемся, например, формулой Симпсона

$$\int_{0}^{b} F(x)dx = \frac{b-a}{6} \left[F(a) + 4F(\frac{a+b}{2}) + F(b) \right] + R_{1}(F(x)), \quad (24)$$

$$\int_{c}^{d} f(x, y) dy = \frac{d - c}{6} \left[f(x, c) + 4F(x, \frac{c + d}{2}) + f(x, d) \right] + R_{y}(f(x, y)).$$
(25)

Подставляя (25) в (24), получим кубатурную формулу, которую можно назвать формулой Симпсона:

$$\int_{ac}^{bd} f(x,y) dx dy = \frac{(b-a)(d-c)}{36} [f(a,c) + f(b,c) + 4(f(a,\frac{c+d}{2}) + f(\frac{a+b}{2},c) + f(\frac{a+b}{2},d) + f(b,\frac{c+d}{2})) + 4(f(a,\frac{c+d}{2}) + f(a,d) + f(b,d)] - \frac{(b-a)(d-c)}{2880} \times [(b-a)^4 \frac{\partial^4 f(\xi,\eta)}{\partial x^4} + (d-c)^4 \frac{\partial^4 f(\xi_1,\eta_1)}{\partial y^4} + 4(b-a)^4 \frac{\partial^8 f(\xi_2,\eta_2)}{\partial x^4 \partial y^4}].$$
(26)

Метод замены подынтегральной функции интерполяционным многочленом

Пусть область G - прямоугольник, на котором введена равномерная сетка: $x_i = a + ih$, $y_j = c + jI$, $h = \frac{b-a}{n}$, $I = \frac{d-c}{m}$. Тогда по аналогии с одномерным случаем интерполяционный многочлен можно записать в виде

$$L(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{l} f(x_i, y_j) \frac{\omega_{n+1}(x)\omega_{n+1}(y)}{(x - x_i)(y - y_j)\omega_{n+1}'(x_i)\omega_{n+1}'(y_j)}.$$

Интегрируя по прямоугольнику, получим

$$\iint_{a} \int_{c}^{b} f(x, y) dx dy = \sum_{i=0}^{n} \sum_{j=0}^{m} c_{ij} f(x_i, y_j) + \overline{R}(f(x, y)), \qquad (27)$$

где
$$c_{ij} = \int_{a}^{b} \frac{\omega_{n+1}(x)dx}{(x-x_i)\omega_{n+1}'(x_i)} \int_{c}^{d} \frac{\omega_{m+1}(y)dy}{(y-y_j)\omega_{m+1}'(y_j)} = (b-a)(c-d)B_i^n B_j^m, \ B_i^n, \ B_j^m - b_j^m$$

коэффициенты Ньютона-Котеса.

Возьмем в области G четыре узла для квадратуры Гаусса:

$$\begin{split} x_0 &= \frac{a+b}{2} - \frac{b-a}{2\sqrt{3}} \;, \; \; x_1 = \frac{a+b}{2} + \frac{b-a}{2\sqrt{3}} \;, \\ y_0 &= \frac{c+d}{2} - \frac{d-c}{2\sqrt{3}} \;, \; \; y_1 = \frac{c+d}{2} + \frac{d-c}{2\sqrt{3}} \;. \end{split}$$

Получим кубатурную формулу Гаусса с четырьмя узлами:

$$\iint_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \frac{(b-a)(c-d)}{4} [f(x_0, y_0) + f(x_0, y_1) + f(x_1, y_0) + f(x_1, y_1)] + \overline{R}(f(x, y)),$$
(28)

где

$$\overline{R}(f(x,y)) = \frac{(b-a)(d-c)}{5 \times 24^{3}} [(b-a)^{4} \frac{\partial^{4} f(\xi,\eta)}{\partial x^{4}} + (d-c)^{4} \frac{\partial^{4} f(\xi_{1},\eta_{1})}{\partial y^{4}} - \frac{(b-a)^{4} (d-c)^{4}}{5 \times 24^{3}} \frac{\partial^{8} f(\overline{\xi},\overline{\eta})}{\partial x^{4} \partial y^{4}}].$$

Из выражения для погрешности видно, что формула (28), построенная по четырем узлам, может оказаться точнее формулы Симпсона, использующей девять узлов.

Методы уточнения интегралов

Формула Эйлера

В тех случаях, когда известно разложение погрешности квадратурной формулы в степенной ряд по h, приближенное значение интеграла можно уточнить, проводя точное или приближенное вычисление коэффициентов ряда.

Рассмотрим функцию $\varphi(x,t) = \frac{xe^{tx}}{e^x-1}$. Возьмем её разложение в равномерно сходящийся по x ряд при $|x| \le \alpha < 2\pi$

$$\frac{xe^{tx}}{e^x-1} = \sum_{n=0}^{\infty} \frac{B_n(t)}{n!} x^n,$$

где коэффициенты $B_n(t)$ ряда называются многочленами Бернулли, а их значения при t=0 числами Бернулли $B_n=B_n(0)$, $B_0=1$. Значения чисел Бернулли можно получить используя рекуррентную формулу для многочленов Бернулли:

$$B_{0}(t) = 1,$$

$$\frac{t^{n-1}}{(n-1)!} = \frac{B_{n-1}(t)}{1!(n-1)!} + \frac{B_{n-2}(t)}{2!(n-2)!} + \dots + \frac{B_{0}(t)}{n!1!}.$$
(29)

Пусть f(x) - достаточно гладкая на отрезке [a,b] функция. Тогда можно показать, что имеет место формула:

$$\int_{a}^{a+h} f(x)dx = \frac{h}{2} [f(a) + f(a+h)] - \frac{B_2h^2}{2!} [f'(a+h) - f'(a)] - \frac{B_4h^4}{4!} [f^{(3)}(a+h) - f^{(3)}(a)] - \dots - \frac{B_2rh^{2r}}{(2r)!} [f^{(2r-1)}(a+h) - f^{(2r-1)}(a)] + R_{2r}$$

После суммирования на всем отрезке [a, a + nh] получим:

$$\int_{a}^{a+nh} f(x)dx = h\left[\frac{1}{2}f(a) + f(a+h) + \dots + f(a+(n-1)h) + \frac{1}{2}f(b)\right] - \frac{B_{2}h^{2}}{2!} [f'(b) - f'(a)] - \frac{B_{4}h^{4}}{4!} [f^{(3)}(b) - f^{(3)}(a)] - \frac{B_{2r+2}h^{2r}}{(2r)!} [f^{(2r-1)}(b) - f^{(2r-1)}(a)] - nh^{2r+3} \frac{B_{2r+2}}{(2r+2)!} f^{(2r+2)}(\xi).$$
(30)

Формула (30) называется формулой Эйлера. Она позволяет уточнить значение интеграла, вычисленного по формуле трапеций, путем вычисления производных от подынтегральной функции на концах отрезка.

Экстраполяция по Ричардсону

Рассмотрим способ уточнения интегралов, основанный на приближенном вычислении коэффициентов в разложении погрешности квадратурного правила.

Пусть погрешность имеет вид $R(f)=Mh^m$, где M - некоторая постоянная, подлежащая определению. Пусть интеграл вычислен для значений n_1 и n_2 , где $n_2>n_1$ и $h_1=\frac{b-a}{n_1}$, $h_2=\frac{b-a}{n_2}$. Согласно предположению о структуре погрешности имеем:

$$R_{n_1}(f) = I - I_{n_1} = Mh_1^m, \ R_{n_2}(f) = I - I_{n_2} = Mh_2^m,$$

где $\,I\,$ - точное значение интеграла. Тогда для постоянной $\,M\,$ получим выра-

жение:
$$M = (I_{n_2} - I_{n_1}) \frac{n_1^m n_2^m}{(b-a)^m (n_2^m - n_1^m)}$$
 и, следовательно, для погрешности

R(f) имеем: $R(f = \frac{I_{n_2} - I_{n_1}}{n_2^m - n_1^m} n_1^m$. Значит, в качестве уточненного значения

интеграла можно взять выражение

$$I_{n_1,n_2} = I_{n_2} + \frac{n_1^m}{n_2^m - n_1^m} (I_{n_2} - I_{n_1}).$$
(31)

Указанный способ уточнения интегралов называется экстраполяцией по Ричардсону. На практике в качестве n_2 удобно брать значение $n_2 = 2n_1$. В этом случае формула (31) принимает вид:

$$I_{n_1,n_2} = I_{n_2} + \frac{I_{n_2} - I_{n_1}}{2^m - 1} \,. \tag{32}$$

Формула Ромберга

Последовательное применение формулы Ричардсона позволяет существенно уточнить значение интеграла. Пусть известно, что для погрешности квадратурного правила справедливо разложение:

$$I_h = I + a_1 h^{\alpha_1} + a_2 h^{\alpha_2} + \dots + a_m h^{\alpha_m} + o(h^{\alpha_{m+1}}),$$
 (33)

где $\alpha_1 < \alpha_2 < \dots \alpha_m$. Будем считать, что приближенные значения интеграла I вычислены для последовательности шагов h_0, h_1, \dots, h_m , где $h_k = qh_{k-1} = q^kh_0$. Обозначим $I^{(0)} = I$, $I_{h_k}^{(1)} = I_{h_k}$,

$$I_{h_k} = I + a_1 h_k^{\alpha_1} + a_2 h_k^{\alpha_2} + \dots + a_m h_k^{\alpha_m} + o(h_k^{\alpha_{m+1}}).$$
 (34)

Рассмотрим представление (33) для двух соседних значений $I_{h_{\iota}}^{(1)}$, и $I_{h_{\iota}}^{(1)}$:

$$I_{h_{k-1}}^{(1)} = I + a_1 h_{k-1}^{\alpha_1} + a_2 h_{k-1}^{\alpha_2} + \ldots + a_m h_{k-1}^{\alpha_m} + o(h_{k-1}^{\alpha_{m+1}}),$$

$$I_{h_k}^{(1)} = I + a_1 h_k^{\alpha_1} + a_2 h_2^{\alpha_2} + \ldots + a_m h_k^{\alpha_m} + o(h_k^{\alpha_{m+1}}).$$

Исключая a_1 , имеем $I_{h_k}^{(1)}-q^{\alpha_1}I_{h_{k-1}}^{(1)}=I(1-q^{\alpha_1})+o(h_{k-1}^{\alpha_2})$. Следовательно, в качестве уточненного значения можно взять:

$$I_{h_{k-1}}^{(2)} = I_{h_{k-1}}^{(1)} + \frac{1}{1 - \rho^{\alpha_1}} (I_{h_k}^{(1)} - I_{h_{k-1}}^{(1)}). \tag{35}$$

Описанный процесс можно продолжить, вычисляя $I_{h_k}^{(j)}$ по формулам:

$$I_{h_{k-1}}^{(j+1)} = I_{h_{k-1}}^{(j)} + \frac{1}{1 - q^{q_j}} (I_{h_k}^{(j)} - I_{h_{k-1}}^{(j)}),$$
(36)

где $j=\overline{1,m},\ k=\overline{1,m-j+1}$, а $I_{h_k}^{(1)}=I_{h_k},\ k=\overline{0,m}$. Заметим, что значения $I_{h_k}^{(j)}$ совпадают с точным значением I с погрешностью $o(h_k^{\alpha_j})$.

Применительно к квадратурному правилу трапеций описанный метод уточнения интегралов называется методом Ромберга. Постоянные разложе-

ния $\alpha_1, \alpha_2, \dots$ для квадратурного правила трапеций определяются формулой Эйлера (30).

Задания к лабораторной работе

1. Вычислить интегралы по обобщенной формуле трапеций, разбив отрезок интегрирования на n частей. Оценить погрешность.

Вариант	Подынтегральная функция	a	b	n
1	1/x	1	2	5
2	$1/(1+x^2)$	0	1	4
3	$\sqrt{6x-5}$	1	9	8
4	$\sin x^2$	0	1	8
5	$\ln(1+x^2)$	0	1	5
6	e^{x^2}	0	1	8
7	sin x	0	$\pi/2$	4
8	$\sqrt{2x^2+3}$	1	6	10
9	$\cos x^2$	0	$\pi/2$	4
10	$\sqrt[3]{x}$	1	6	10
11	$\frac{\sqrt[3]{x}}{x\sqrt[3]{1-x^2}}$	1	2	5
12	xe^{-x}	0	1	8
13	$x^2 \cos x$	0	2π	8
14	$\frac{\sqrt{1+e^x}}{(x+1)/\sqrt{x}}$	0	1	4
15	$(x+1)/\sqrt{x}$	1	3	8

2. Вычислить интеграл по обобщенной формуле Симпсона при заданном числе разбиений отрезка интегрирования. Оценить погрешность.

Вариант	Подынтегральная функция	a	b	n
1	$x^2/(1+x^2)$	0	1	8
2	1/(1+x)	0	1	4
3	xe ^x	0	1	8
4	$\sqrt{1+x^2}$	0	1	8

5	$1/(1+x^2)$	0	2	8
6	1/ln <i>x</i>	1	2	4
7	$\sin^2 x$	0	π	8
8	$\ln^2 x$	1	4	6
9	$1 + \sin x$	0	$\pi/2$	4
10	$2xe^{-x}$	0	1	8
11	$\sqrt{\ln x}$	1	2	4
12	$\sqrt{x^2+2}$	0	1	8
13	$\sin^2 x + \cos x$	0	2π	8
14	e^{x}/x	1	2	4
15	$x \ln x$	1	3	8

3. Вычислить интеграл по обобщенной формуле трапеций с двумя верными знаками после запятой.

Вариант	Подынтегральная функция	a	b
1	$x \ln x$	1	2
2	e^x/x	1	2
3	$\sin^2 x + \cos x$	0	π
4	$\sqrt{\ln x}$	1	2
5	$2xe^{-x}$	0	2
6	$1 + \sin x$	0	$\pi/2$
7	$x + e^{2x}$	0	1
8	$x^2 + \ln x$	1	3
9	1/ln <i>x</i>	1	2
10	$1/(1+x^2)$	0	1
11	x sin x	0	π
12	$ln(1+x^2)$	0	1
13	xe ^x	0	1
14	1/(1+x)	1	2
15	$x^2/(1+x^2)$	1	2

4. Вычислить	интеграл по	формуле	Гаусса лпя	n=3.
T. DDI INCAMID	militar pasi mo	формулс.	г аусса длл	H-J.

Вариант	Подынтегральная функция	a	b
1	$\sin 2x$	0	$\pi/2$
2	xe^{x^2}	0	1
3	$x \ln x$	1	2
4	$\sqrt[3]{x+1}$	2	4
5	$\sqrt{1+x^2}$	-1	2
6	$1/(x^2 + x + 1)$	0	2
7	$\ln x/x$	2	4
8	$\sqrt{x-1}$	2	5
9	$\sqrt[3]{x-1}$	2	4
10	$xe^{\sqrt{x}}$	0	1
11	$x^2 \sin x$	0	π
12	$\sqrt{x}e^{x}$	0	1
13	$x^3/(1+x^3)$	0	1
14	$\sqrt{x}/(1+\sqrt[3]{x})$	1	2
15	$x^2 \ln x$	1	2

- 5. Вычислить интеграл по обобщенной формуле трапеций для n и n+kузлов и уточнить результат:
 - а) по формуле Ричардсона; б) по формуле Эйлера; в) по формуле Ромберга.

Вариант	Подынтегральная функция	a	b	n	k
1	1/(3+x)	-1	1	5	5
2	$\sin x/x$	1	2	4	4
3	$\ln(1+x^2)$	0	1	4	2
4	$\sqrt{1+x^2}$	0	1	4	2
5	$x\ln(1+x)$	0	1	3	3
6	$\sqrt{x}/(1+x^2)$	0	1	5	5

Вариант	Подынтегральная функция	a	b	n	k
7	$\sqrt[3]{x}$	0	2	4	2
8	xe ^x	0	2	4	6
9	$1/(1-x^2)$	2	3	4	4
10	e^{-x^2}	0	1	3	3
11	$\sqrt[3]{\sin^2 x}$	0	$\pi/2$	5	3
12	$e^x \sin x$	0	$\pi/2$	4	4
13	$e^x \cos x$	0	2π	4	4
14	tgx	0	$\pi/4$	3	6
15	$x/(x^2+x+1)$	1	2	4	4

6. Вычислить приближенно двойной интеграл

$$\iint_{a}^{b} F(x, y) dx dy,$$

где F(x, y) = f(x) f(y), а функция f(x) и пределы интегрирования a и b берутся из задания 5. Использовать:

- а) кубатурную формулу Симпсона с шагами $h_x = h_y = \frac{b-a}{4}$;
- б) метод Гаусса для n=2.

Вопросы по лабораторной работе

- 1. Определенный интеграл и его геометрическая интерпретация.
- 2. Квадратурные формулы прямоугольников и их остаточный член.
- 3. Квадратурная формула Ньютона-Котеса.
- 4. Квадратурная формула трапеций и ее остаточный член. Геометрическая интерпретация.
- 5. Квадратурная формула Симпсона и ее остаточный член. Геометрическая интерпретация.
- Обобщенные квадратурные формулы трапеций и Симпсона и их остаточные члены.
- 7. Многочлены Лежандра и их свойства.
- 8. Квадратурная формула Гаусса и ее остаточный член.
- 9. Методы вычисления несобственных интегралов. Метод Канторовича.
- 10. Уточнение значений интеграла по формуле Ричардсона.
- 11. Методы вычисления двойных интегралов.